

The Gutenberg-Richter magnitude frequency relationship

1976-2005 Global CMT catalog

Common Errors in b value Calculation

- Fitting data with linear least squares (LSQ) rather than the simple maximum likelihood (MLE) method (read Aki (1965))
- 2. Data set is too small
- 3. Using earthquakes smaller than the catalog completeness threshold
- 4. Using data with magnitude errors

>2000 good quality earthquakes are required for 98% confidence errors < 0.05

Error: Using earthquakes smaller than the catalog completeness threshold

Setting the catalog completeness threshold by eye can lead to *b* value underestimation by 0.1 to 0.2.

Error: Using data with magnitude errors

1984-1999 Southern California Catalog

- Larger magnitude errors for smaller earthquakes inflate *b*
- b is best fit at the largest reasonable minimum magnitude

Two Important Questions

- Does b value vary with location? (Wiemer and Wyss, 1997; Schorlemmer and Wiemer, 2004...)
- Does the magnitude-frequency distribution vary on and off of major faults? (Wesnousky et al. 1983; Schwartz and Coppersmith, 1984...)

Location: We calculate *b* values in 1° x 1° bins throughout California

Assuming no magnitude error and uniform catalog completeness to M 2.6, all values are $0.9 \le b \le 1.1$.

Same for 0.5 °x 0.5 °, 0.25 °x 0.25 °, 0.1 ° x 0.1 ° bins

Is the magnitude-frequency distribution different on and off of major faults?

Quiz!

Identify the distributions taken from major fault zones*

*Fault zone: +-2 km from entire surface trace of mapped fault.

All data from California, 1984-2004

Identify the distributions taken from major fault zones*

*Fault zone: +-2 km from entire surface trace of mapped fault All data from California, 1984-2004

Quiz #2!

Identify the distributions taken from major fault zones

All distributions are purposely chosen around a large earthquake. All data from California, 1984-2004

Identify the distributions taken from major fault zones

All of these earthquake distributions are purposely centered around a large earthquake in the catalog

But isn't the San Andreas clearly characteristic?

M 6 Parkfield earthquakes are simply an expected part of the G-R distribution (*Jackson and Kagan*, 2006)

The historic record along the full SAF

Catalog is too incomplete, short, and error-prone, but Gutenberg-Richter is suggested

Conclusions

- Calculating an accurate b value is critical for hazard analysis, physical understanding.
- b value should be solved for with MLE and >2000 quality earthquakes above the catalog completeness threshold.
- There is no evidence for significant b value variation with location or on/off of major faults in California.

Error #1: Fitting with least squares rather than MLE

b value solved from 100 trials with 500 simulated earthquakes each; true b=1.0.

MLE solutions are closer to the true value of b

Why the value of b is important

Hazard Analysis: Small changes in b => large
changes in projected numbers of major earthquakes

Example

10,000 M ≥ 4 earthquakes
$$b = 1.0 10 M ≥ 7 eqs$$
 $b = 0.9 20 M ≥ 7 eqs$

Earthquake Physics: The magnitude distribution reflects fundamental properties of how earthquakes grow and stop.

Error #1: Fitting with linear least squares (LSQ) rather than MLE

- LSQ is disproportionately influenced by the largest earthquakes
- MLE weighs each earthquake equally